Chemistry 362 Mini-Exam V
Fall 2019
Thursday November 14, 2019

Professor Kim R. Dunbar

NAME:

ID:

Total Points on Exam is $\mathbf{5 0}$ points

1. (6 pts)
a. What are the three main bonding theories for transition metal complexes and the two main considerations that all three theories must take into account?
1) Molecular orbital theory
2) Crystal Field Theory
3) Ligand Field theory

Considerations are

1) Geometry
2) Ligand type
2. (10 pts)

For the molecules in the list below
a) Choose the correct answers from I, II or III
b) Classify the ligand as strong field or weak field
$\mathrm{W}(\mathrm{CO})_{6}$
a) I_b) strong field
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
a) II b) strong field
$\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{3-}$
a) I b) strong field
$\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
a) II b) weak field
$\left[\mathrm{Re}_{2} \mathrm{Cl}_{8}\right]^{2-} \quad$ a) III b) weak field
I. the ligand type is a π-acceptor.
II. the ligand type is a σ-donor.
III. the ligand type is a π-donor
3. (4 points)

The magnitude of d-orbital splitting is affected by both the nature of the metal and the nature of the ligand.
For each parameter (metal dependence and ligand dependence) select the correct series (A or B, C or D) ordering in terms of increasing the ligand field splitting.

Metal dependence
(A) $\mathrm{Mn}^{2+}>\mathrm{Ni}^{2+}>\mathrm{Co}^{2+}>\mathrm{Fe}^{2+}>\mathrm{V}^{2+}>\mathrm{Fe}^{3+}>\mathrm{Cr}^{3+}>\mathrm{V}^{3+}>\mathrm{Co}^{3+}>\mathrm{Mn}^{4+}>\mathrm{Mo}^{3+}>\mathrm{Rh}^{3+}>\mathrm{Pd}^{4+}>\mathrm{Ir}^{3+}>\mathrm{Re}^{4+}>\mathrm{Pt}^{4+}$
(B) $\mathrm{Mn}^{2+}<\mathrm{Ni}^{2+}<\mathrm{Co}^{2+}<\mathrm{Fe}^{2+}<\mathrm{V}^{2+}<\mathrm{Fe}^{3+}<\mathrm{Cr}^{3}<\mathrm{V}^{3+}<\mathrm{Co}^{3+}<\mathrm{Mn}^{4+}<\mathrm{Mo}^{3+}<\mathrm{Rh}^{3+}<\mathrm{Pd}^{4+}<\mathrm{Ir}^{3+}<\mathrm{Re}^{4+}<\mathrm{Pt}^{4+}$

Ligand dependence - the Spectrochemical Series

(C) $\mathrm{O}_{2}{ }^{2-}>\mathrm{I}^{-}>\mathrm{Br}^{-}>\mathrm{S}^{2-}>\mathrm{SCN}^{-}$(S-bonded) $>\mathrm{Cl}^{-}>\mathrm{N}_{3}^{-}>\mathrm{F}^{-}>\mathrm{NCO}^{-}>\mathrm{OH}^{-}>\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}>\mathrm{H}_{2} \mathrm{O}>\mathrm{NCS}^{-}(\mathrm{N}-$ bonded) $>\mathrm{CH}_{3} \mathrm{CN}>$ py (pyridine) $>\mathrm{NH}_{3}>$ en (ethylenediamine) $>$ bipy (2,2'-bipyridine) $>$ phen (1,10phenanthroline) $>\mathrm{NO}_{2}^{-}>\mathrm{PPh}_{3}>\mathrm{CN}^{-}>\mathrm{CO}$
(D) $\mathrm{O}_{2}{ }^{2-}<\mathrm{I}^{-}<\mathrm{Br}^{-}<\mathrm{S}^{2-}<\mathrm{SCN}^{-}$(S-bonded) $<\mathrm{Cl}^{-}<\mathrm{N}_{3}^{-}<\mathrm{F}^{-}<\mathrm{NCO}^{-}<\mathrm{OH}^{-}<\mathrm{C}_{2} \mathrm{O}_{4}^{2-}<\mathrm{H}_{2} \mathrm{O}<\mathrm{NCS}^{-}(\mathrm{N}-$ bonded) $<\mathrm{CH}_{3} \mathrm{CN}<$ py (pyridine) $<\mathrm{NH}_{3}<$ en (ethylenediamine) $<$ bipy $(2,2$ '-bipyridine) $<$ phen $(1,10-$ phenanthroline) $<\mathrm{NO}_{2}^{-}<\mathrm{PPh}_{3}<\mathrm{CN}^{-}<\mathrm{CO}$
4. (10points)
a) Sketch both a Low-Spin L.S. and a High-Spin H.S. d ${ }^{7}$ octahedral splitting diagram and put the electrons in. 4 pts

b) Calculate the CFSE for each one. 2 pts

$$
\begin{aligned}
& \text { LS d d}^{7}: 6\left(-2 / 5 \Delta_{\mathrm{o}}\right)+1\left(3 / 5 \Delta_{\mathrm{o}}\right)+3 \mathrm{P} \\
& \text { HS d }^{7}: 5\left(-2 / 5 \Delta_{\mathrm{o}}\right)+2\left(3 / 5 \Delta_{\mathrm{o}}\right)+2 \mathrm{P}
\end{aligned}
$$

b) The adoption of one configuration over the other depends on what? 4 pts

Depends on the relative magnitude of Δ_{0} as compared to the electron pairing energy. If $\boldsymbol{\Delta}_{0}$ is greater than PE, then the configuration will be LS. If Δ_{0} is less than PE, then the configuration will be high spin.
6. (12 pts)
a) Draw the d-orbital splitting diagrams for octahedral, tetrahedral and square planar geometries 6 pts

Square planar
b) Why is the relative splitting energy larger for an octahedral field larger than that of a tetrahedral field? 3 pts

Interactions are weaker in tetrahedral geometries as ligands do not point to orbitals on the metal. Therefore, the magnitude of stabilization/destabilization is decreased compared to octahedral geometries.
c) If a d ${ }^{9}$ metal was placed into the above ligand fields, would you expect paramagnetism or diamagnetism? 3 pts

All three geometries would result in a paramagnetic configuration for a d ${ }^{9}$ metal
5. Determine the ground state term symbols for the following free ions. Show ALL work (8 pts)
(a) Fe^{3+}

$\mathrm{L}=\mathbf{0} \rightarrow \mathrm{S}$
$2 S+1=2(2.5)+1=6$
${ }^{6} \mathrm{~S}$
(b) Ti^{2+}

(c) Ti^{4+}
$\mathbf{d}^{0}: \quad \overline{+2} \overline{+1} \overline{0} \quad-\frac{}{-1}$
$\mathrm{L}=0 \rightarrow \mathrm{~S}$
$2 \mathrm{~S}+1=2(0)+1=1$
${ }^{1} \mathrm{~S}$
(d) Cu^{2+}

$\mathrm{L}=2 \rightarrow \mathrm{D}$
$2 \mathrm{~S}+1=2(0.5)+1=2$
${ }^{2}$ D

